參考書目 張楓明、潭子文(2011):個人信念、生活負向事件、偏差同儕與青少年初次偏差行為關聯性之實
徵研究。青少年犯罪防治研究期刊,3(1),133-159。[Chang, F. M., & Tan, T. W. (2011). The
relationship between adolescent belief, negative life event, deviant peer, and onset of delinquency.
Journal of Adolescents Criminal Prevention Research, 3(1), 133-159.]
潭子文、張楓明(2012):緊張因素、接觸偏差同儕及低自我控制與青少年偏差行為關聯性之研究。
臺 中 教 育 大 學 學報: 數 理 科 技 類,26(1),27-50。[Tan, T. W., & Chang, F. M. (2012). The
relationship between general strain theory, deviant peer, low self-control, and onset of delinquency.
Journal of National Taichung University: Mathematics, Science & Technology, 26(1), 27-50.]
董旭英、王文玲(2007):國高中生依附父母、接觸偏差同儕、傳統價值觀念與偏差行為的關聯性
之差異性研究。犯罪學期刊,10(2),29-48。[Tung, Y. Y., & Wang, W. L. (2007). Study for
differential effects of attachment to parents, association with delinquent peers, and conventional
values on delinquency of junior and senior high school students. Journal of Criminology, 10(2), 29-
48.]
詹宜華、張楓明、董旭英(2012):國中生接觸偏差同儕在其衝動性格、知覺父母監督與偏差行為間
關聯性之中介效果。犯罪與刑事司法研究,18,89-123。[Chan, Y. H., Chang, F. M., & Tung, Y.
Y. (2012). The mediating effect of junior high school students associating with delinquent peers on
the relationship between impulsivity and recognition of parental monitoring and deviant behavior.
Crime and Criminal Justice International, 18, 89-123.]
Agnew, R. (1992). Foundation for a general strain theory of crime and delinquency. Criminology, 30(1),
47-88. doi: 10.1111/j.1745-9125.1992.tb01093.x
Akers, R. L. (1977). Deviant behavior: A social learning approach. Belmont, CA: Wadsworth.
Akers, R. L., & Jennings, W. G. (2009). The social learning theory of crime and deviance. In M. D.
Krohn, A. J. Lizotte, & G. P. Hall (Eds.), Handbook on crime and deviance (pp. 103-120). New
York, NY: Springer. doi: 10.1007/978-1-4419-0245-0
Akers, R. L., & Sellers, C. S. (2009). Criminological theories: Introduction, evaluation, and application.
New York, NY: Oxford.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy
of Marketing Science, 16(1), 74-94.
Benson, M. J., & Buehler, C. (2012). Family process and peer deviance influences on adolescent
aggression: Longitudinal effects across early and middle adolescence. Child Development, 83(4),
1213-1228. doi: 10.1111/j.1467-8624.2012.01763.x
Brauer, J. R. (2009). Testing social learning theory using reinforcement's residue: A multilevel analysis
of self-reported theft and marijuana use in the national youth survey. Criminology, 47(3), 929-970.
doi: 10.1111/j.1745-9125.2009.00164.x
Burnett, S., Bault, N., Coricelli, G., & Blakemore, S. J. (2010). Adolescents' heightened risk-
seeking in a probabilistic gambling task. Cognitive Development, 25(2), 183-196. doi: 10.1016/
j.cogdev.2009.11.003
Defoe, I. N., Dubas, J. S., Figner, B., & van Aken, M. A. G. (2015). A meta-analysis on age differences
in risky decision making: Adolescents versus children and adults. Psychological Bulletin, 141(1),
48-84. doi: 10.1037/a0038088
Durkin, K. F., Wolfe, T. W., & Clark, G. A. (2005). College students and binge drinking: An evaluation
of social learning theory. Sociological Spectrum, 25(3), 255-272. doi: 10.1080/027321790518681
Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor analysis
techniques to the study of leadership. The Leadership Quarterly, 16(1), 149-167. doi: 10.1016/
j.leaqua.2004.09.009
Finney, S. J., & DiStefano, C. (2013). Non-normal and categorical data in structural equation modeling.
In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (2nd ed.,
pp. 439-492). Charlotte, NC: Information Age Publishing.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables
and measurement error. Journal of Marketing Research, 18(1), 39-50. doi: 10.2307/3151312
Gallupe, O., & Bouchard, M. (2013). Adolescent parties and substance use: A situational approach to
peer influence. Journal of Criminal Justice, 41(3), 162-171. doi: 10.1016/j.jcrimjus.2013.01.002
Gottfredson, M. R., & Hirschi, T. (1990). A general theory of crime. Stanford, CA: Stanford University
Press.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis (7th ed.).
Englewood Cliffs, NJ: Prentice Hall.
Heck, R. H. (2001). Multilevel modeling with SEM. In G. A. Marcoulides & R. E. Schumacker (Eds.),
New developments and techniques in structural equation modeling (pp. 89-127). Mahwah, NJ:
Lawrence Erlbaum Associates.
Heck, R. H., & Thomas, S. L. (2009). An introduction to multilevel modeling techniques (2nd ed.). New
York, NY: Routledge. doi: 10.1111/j.1751-5823.2009.00085_11.x
Higgins, G. E., & Tewksbury, R. (2007). Sports fan binge drinking: An examination using low self-control
and peer association. Sociological Spectrum, 27(4), 389-404. doi: 10.1080/02732170701313472
Hox, J. J. (2010). Multilevel analysis: Techniques and applications. New York, NY: Routledge. doi:
10.4324/9780203852279
Hox, J. J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with
pseudobalanced groups and small samples. Structural Equation Modeling, 8(2), 157-174. doi:
10.1207/s15328007sem0802_1
Hox, J. J., Maas, C. J. M., & Brinkhuis, M. J. S. (2010). The effect of estimation method and sample size
in multilevel structural equation modeling. Statistica Neerlandica, 64(2), 157-170. doi: 10.1111/
j.1467-9574.2009.00445.x
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:
Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary
Journal, 6(1), 1-55. doi:10.1080/10705519909540118
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS
command language. Chicago, IL: Scientific Software International.
Kaplan, D. (2009). Structural equation modeling: Foundations and extensions (2nd ed.). Los Angeles:
Sage. doi: 10.1207/S15328007SEM1002_10
Kline, R. B. (2011). Principle and practice of structural equation modeling (3rd ed.). New York, NY:
Guilford. doi: 10.1111/insr.12011_25
Li, C. H. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood
and diagonally weighted least squares. Behavior Research Methods, 48(3), 936-949. doi: 10.3758/
s13428-015-0619-7
Lilly, J. R., Cullen, F. T., & Ball, R. A. (2007). Crime in American society: Anomie and strain theories.
Thousand Oaks, CA: Sage.
Marsh, H. W., Muthen, B., Asparouhov, T., Ludtke, O., Robitzsch, A., Morin, A. J. S., & Trautwein,
U. (2009). Exploratory structural equation modeling, integrating CFA and EFA: Application to
students' evaluations of university teaching. Structural Equation Modeling: A Multidisciplinary
Journal, 16(3), 439-476. doi: 10.1080/10705510903008220
Matsueda, R. L., Kreager, D. A., & Huizinga, D. (2006). Deterring delinquents: A rational
choice model of theft and violence. American Sociological Review, 71(1), 95-122. doi:
10.1177/000312240607100105
Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling.
Psychological Methods, 10(3), 259-284. doi: 10.1037/1082-989x.10.3.259
Meldrum, R. C., Young, J. T. N., & Weerman, F. M. (2009). Reconsidering the effect of self-control and
delinquent peers: Implications of measurement for theoretical significance. Journal of Research in
Crime and Delinquency, 46(3), 353-376. doi: 10.1177/0022427809335171
Miller, S., Loeber, R., & Hipwell, A. (2009). Peer deviance, parenting and disruptive behavior among
young girls. Journal of Abnormal Child Psychology, 37(2), 139-152. doi: 10.1007/s10802-008-
9265-1
Morin, A. J. S., Marsh, H. W., & Nagengast, B. (2013). Exploratory structural equation modeling. In G. R.
Hancock & C. E. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 395-
436). Charlotte, NC: Information Age Publishing.
Muthén, B. (1994). Multilevel covariance structure analysis. Sociological Methods & Research, 22(3),
376-398. doi: 10.1177/0049124194022003006
Muthén, B., & Asparouhov, T. (2011). Beyond multilevel regression modeling: Multilevel analysis
in a general latent variable framework. In J. Hox & J. K. Roberts (Eds.), Handbook of
Advanced Multilevel Analysis (pp. 15-44). New York: Taylor and Francis. doi: 10.1111/j.1467-
985X.2011.00709_6.x
Muthen, B. (1991). Multilevel factor-analysis of class and student-achievement components. Journal of
Educational Measurement, 28(4), 338-354. doi: 10.1111/j.1745-3984.1991.tb00363.x
Muthén, L. K. & Muthén, B. O. (1998-2012). Mplus User’s Guide (7th ed.). Los Angeles, CA: Muthén &
Muthén.
Muthen, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. Sociological
Methodology, 25, 267-316. doi: 10.2307/271070
Pratt, T. C., Cullen, F. T., Sellers, C. S., Winfree, L. T., Madensen, T. D., Daigle, L. E., Fearn, N.
E., & Gau, J. M. (2010). The empirical status of social learning theory: A meta-analysis. Justice
Quarterly, 27(6), 765-802. doi: 10.1080/07418820903379610
Preacher, K. J. (2011). Multilevel SEM strategies for evaluating mediation in three-level data.
Multivariate Behavioral Research, 46(4), 691-731. doi: 10.1080/00273171.2011.589280
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing
multilevel mediation. Psychological Methods, 15(3), 209-233. doi: 10.1037/a0020141
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis
methods. Thousand Oaks, CA: Sage.
Rebellon, C. J. (2012). Differential association and substance use: Assessing the roles of discriminant
validity, socialization, and selection in traditional empirical tests. European Journal of Criminology,
9(1), 73-96. doi: 10.1177/1477370811421647
Stapleton, L. M. (2013). Multilevel structural equation modeling with complex sample data. In G. R.
Hancock & C. E. Mueller (Eds.), Structural equation modeling: A second course (2nd ed., pp. 521-
562). Charlotte, NC: Information Age Publishing.
Wang, J., & Wang, X. (2012). Structural equation modeling: Application using Mplus. West Sussex,
England: Wiley. doi: 10.1002/9781118356258
Ward, B. W., & Gryczynski, J. (2009). Social learning theory and the effects of living arrangement on
heavy alcohol use: Results from a national study of college students. Journal of Studies on Alcohol
and Drugs, 70(3), 364-372. doi: 10.15288/jsad.2009.70.364
Young, J. T. N., Rebellon, C. J., Barnes, J. C., & Weerman, F. M. (2015). What do alternative measures
of peer behavior tell us? Examining the discriminant validity of multiple methods of measuring
peer deviance and the implications for etiological models. Justice Quarterly, 32(4), 626–652. doi:
10.1080/07418825.2013.788730
Zhang, L., & Messner, S. F. (2000). The effects of alternative measures of delinquent peers on self-
reported delinquency. Journal of Research in Crime and Delinquency, 37(3), 323-337. doi:
10.1177/0022427800037003004